ESCÚCHAME EN

ESCÚCHAME EN
DE ESPAÑA PARA EL MUNDO

El misterio del Cráter de Chicxulub

El cráter de Chicxulub, ubicado en la península de Yucatán, es el cráter mejor conservado en el registro terrestre del planeta y el más reciente entre los cráteres de grandes dimensiones. Su formación se vincula con el impacto de un asteroide de alrededor de 12 kilómetros que afectó el sistema climático y el ambiente a nivel global, provocando la extinción de alrededor de 75 por ciento de las especies, incluidos los dinosaurios.

crater-head-6817.jpg
Los antecedentes del descubrimiento del cráter de Chicxulub se remontan a 1980, cuando el físico Luis Álvarez, junto con sus colegas de la Universidad de California en Berkeley, en Estados Unidos, publicaron el artículo Extraterrestrial cause for the Cretaceous–Tertiary extinction en la revista Science, en el que se planteó por primera vez la teoría del impacto de un cuerpo extraterrestre sobre la Tierra hace aproximadamente 66 millones de años, causando la extinción masiva de especies hacia finales de la era Mesozoica.
Esta propuesta constituyó un factor importante para aumentar el interés en el estudio de impactos de meteoritos y la formación de cráteres, que constituyen uno de los procesos fundamentales en la evolución de las superficies planetarias en el sistema solar, y dio paso al inicio de la búsqueda del posible sitio de impacto.
Dra.-Ligia-Pérez-Cruz-y-Dr.-Jaime-Urrutia-Fucugauchi,-investigadores-del-Instituto-de-Geofísica-de-la-UNAM,-junto-a-su-hija.jpgDra. Ligia Pérez Cruz y Dr. Jaime Urrutia Fucugauchi, investigadores del Instituto de Geofísica de la UNAM, junto a su hija.En 1989, a partir de los trabajos de exploración de Antonio Camargo y Glen Penfield para Petróleos Mexicanos (Pemex) en la plataforma carbonatada de Yucatán, en el sur del golfo de México, se identificó por primera vez un cráter de alrededor de 200 kilómetros de diámetro que fue reconocido en 1991 por Hildebrand y colaboradores como el cráter de impacto Chicxulub.

Recuperación de núcleo del anillo de picos

En palabras de Urrutia Fucugauchi, la expedición resultó exitosa y permitió recuperar más de mil 350 metros de núcleo del anillo de picos. “Los anillos son visibles en muchos de los cráteres de la luna, pero aquí en la Tierra el único que los preserva es Chicxulub. Entonces fue un blanco interesante porque nos permite ahora amarrar mejor los modelos de formación de cráteres complejos del tipo de anillo de picos”, apuntó.
La fase costa-afuera se complementó con una fase en los laboratorios de Bremen, Alemania, donde se reunieron los investigadores asociados al proyecto en octubre de 2016. Como responsable del área de geoquímica, Pérez Cruz realizó un análisis detallado sobre la descripción de las muestras obtenidas sistemáticamente para obtener resultados preliminares de diferentes estudios.
“En la parte de geoquímica, analizamos el contenido de carbono orgánico. Se hicieron algunos análisis para saber cuál era la composición química de las rocas en términos generales, los elementos mayores, menores, traza, para ver si tenían aluminio, silicio, calcio, etcétera, y ver si estos elementos nos hablan de cambios en el ambiente o cambios durante el impacto. También realizamos un análisis mineralógico a través de difracción de rayos X”, indicó.
crater-rec1-6817.jpgRecientemente, el equipo internacional de investigadores se reunió en College Station, Estados Unidos, donde se encuentra el repositorio de núcleos del International Ocean Discovery Program, con el objetivo de integrar la información obtenida de los diversos análisis para la publicación de los resultados preliminares. El reporte contará con una descripción detallada de los diversos métodos empleados y estará disponible en línea a través de la página del IODP para cualquier persona interesada.

El misterio de las forma circulares del anillo de picos

De acuerdo con Urrutia Fucugauchi, los anillos de picos son cadenas montañosas que forman una circunferencia y son estructuras que caracterizan los cráteres grandes en la luna y en otros cuerpos del sistema solar. Existen varios modelos para explicar su formación, “que podamos nosotros discriminar qué tipo de materiales y de dónde provienen nos permite entonces tener un modelo de formación del cráter y, en particular, del anillo”.
Uno de estos propone que la interacción de materiales de diferentes fuentes, principalmente de la parte central y de las orillas, se juntan y producen estas elevaciones. Otro modelo indica que la formación se debe a un proceso interno de rebote cuando se produjo la excavación y el agujero profundo, por lo que el anillo de picos estaría conformado por rocas que provienen de más de veinte kilómetros de la corteza inferior, de 10 kilómetros en la corteza media o más superficiales.
“Lo que encontramos, para sorpresa nuestra, fue que debajo de la zona que perforamos están rocas de la corteza inferior, lo que nos indica que el soporte del anillo está a esa profundidad (dado por el tipo de material que se elevó) y permite discriminar otros modelos que estaban propuestos”, indicó el investigador mexicano.

Hacia una simulación de la construcción del cráter

Estos resultados abren nuevas preguntas sobre la forma en que ocurrió el levantamiento de las rocas, ya que aunque los modelos indican que el basamento de las rocas profundas forma una especie de pilar que se levanta en el centro de la excavación, se desconoce por qué la parte superior se presenta en forma de circunferencia.
“Eso es lo que pasa siempre que uno contesta una pregunta: se abre otra. Ahora estamos tratando de buscar una explicación a por qué lo que uno esperaría que sea una montaña en la parte central, como es la forma en que se levantaría un pico, tiene en realidad una forma circular”, indicó Urrutia Fucugauchi.
Los investigadores buscan comprender los mecanismos que podrían dar origen a este tipo de estructuras circulares. “Uno podría decir que habrá una irregularidad de la forma del terreno, o de la forma en que se levantó, pero viendo la forma de las estructuras tanto en el cráter Chicxulub como en el cráter de la luna, claramente se ve que es una forma fundamental del proceso, no es casualidad que quede como una circunferencia, es parte de los mecanismos de formación del impacto de un meteorito”, señaló.
Las rocas del basamento son de granito, un tipo intrusivo que se genera por fundición y se enfría muy lentamente en el interior de la corteza. Actualmente el equipo de investigación trabaja en el análisis y determinación de sus propiedades de formación a través de la observación en microscopio y en la determinación de sus mecanismos de levantamiento.
“Paralelamente estamos haciendo toda la parte de comprensión elemental de minerales para ver si tenemos rocas de diferentes profundidades o son principalmente rocas profundas. Uno esperaría que en general tuviéramos al menos una cierta proporción de rocas en las diferentes profundidades de la media y de la superior. Si lo podemos determinar, esto nos va a permitir tener una forma de simular la construcción del cráter”, finalizó.

No hay comentarios